Comparte esto 👍👍DESCARGACAPITULO XIV Operaciones con Fracciones Ejercicio 132Simplificar: 2 a 2 3b × 6 b 2 4a = 2 a 2 3b × 6 b 2 4 a =ab x 2 y 5 × 10 a 3 3 m 2 × 9m x 3 = x 2 y 5 × a 3 3 m 2 × m x 3 = 6 a 3 y mx 5 x 2 7 y 3 × 4 y 2 7 m 3 × 14m 5 x 4 = 5 x 2 7 y 3 × 4 y 2 7 m × m 5 x = 8 7 m 2 x 2 y 5 a × 2a b 2 × 3b 10 = 5 a × 2 a b 2 × 3 b 10 = 3 b 2 x 3 15 a 3 × 3 a 2 y × 5 x 2 7x y 2 = 2 x 3 15 a 3 × 3 a 2 y × 5 x 2 7 x y 2 = 2 x 4 7a y 3 7a 6 m 2 × 3m 10 n 2 × 5 n 4 14ax = 7 a m 2 × 3 m n 2 × 5 n a x = n 2 8mx 2 x 2 +x 6 × 8 4x+2 = x (2x+1 ) × 2 (2x+1 ) = 2x 3 5x+25 14 × 7x+7 10x+50 = 5 (x+5 ) × 7 (x+1 ) (x+5 ) = x+1 4 m+n mn– n 2 × n 2 m 2 – n 2 = (m+n ) n (m–n ) × n 2 (m–n )(m+n ) = n (m–n ) 2 xy–2 y 2 x 2 +xy × x 2 +2xy+ y 2 x 2 –2xy = y (x–2y ) x (x+y ) × (x+y ) 2 x (x–2y ) = y(x+y ) x 2 x 2 –4xy+4 y 2 x 2 +2xy × x 2 x 2 –4 y 2 = (x–2y ) 2 x (x+2y ) × x 2 (x+2y )(x–2y ) = x(x–2y ) (x+2y ) 2 2 x 2 +2x 2 x 2 × x 2 –3x x 2 –2x–3 = 2 x (x+1 ) 2 x 2 × x (x–3 ) (x–3 ) (x+1 ) =1 a 2 –ab+a–b a 2 +2a+1 × 3 6 a 2 –6ab = a(a–b ) +(a–b ) (a+1 ) 2 × 3 6a(a–b ) = (a–b ) (a+1 ) (a+1 ) 2 × 3 a (a–b ) = 1 2(a+1 ) (x–y ) 3 x 3 –1 × x 2 +x+1 (x–y ) 2 = (x–y ) 3 (x–1 )( x 2 +x+1 ) × x 2 +x+1 (x–y ) 2 = x–y x–1 2a–2 2 a 2 –50 × a 2 –4a–5 3a+3 = 2 (a–1 ) 2 ( a 2 –25 ) × (a–5 )(a+1 ) 3 (a+1 ) = a–1 (a+5 )(a–5 ) × a–5 3 = a–1 3(a+5 ) 2 x 2 –3x–2 6x+3 × 3x+6 x 2 –4 = 2 x 2 –4x+x–2 3(2x+1 ) × 3 (x+2 ) (x–2 )(x+2 ) = 2x(x–2 ) +x–2 3(2x+1 ) × 3 x–2 = (2x+1 ) (x–2 ) 3 (2x+1 ) × 3 (x–2 ) =1 y 2 +9y+18 y–5 × 5y–25 5y+15 = (y+6 )(y+3 ) y–5 × 5 (y–5 ) 5 (y+3 ) =y+6 x 3 +2 x 2 –3x 4 x 2 +8x+3 × 2 x 2 +3x x 2 –x = x( x 2 +2x–3 ) 4 x 2 +2x+6x+3 × x (2x+3 ) x (x–1 ) = x(x+3 )(x–1 ) 2x(2x+1 ) +3(2x+1 ) × 2x+3 x–1 = x(x+3 ) (2x+3 )(2x+1 ) × (2x+3 ) = x(x+3 ) 2x+1 x 3 –27 a 3 –1 × a 2 +a+1 x 2 +3x+9 = (x–3 )( x 2 +3x+9 ) (a–1 )( a 2 +a+1 ) × a 2 +a+1 x 2 +3x+9 = x–3 a–1 a 2 +4ab+4 b 2 3 × 2a+4b (a+2b ) 3 = (a+2b ) 2 3 × 2 (a+2b ) (a+2b ) 3 = 2 3 1–x a+1 × a 2 +a x– x 2 × x 2 a = 1–x a+1 × a (a+1 ) x (1–x ) × x 2 a =x x 2 +2x x 2 –16 × x 2 –2x–8 x 3 + x 2 × x 2 +4x x 2 +4x+4 = x (x+2 ) (x–4 )(x+4 ) × x 2 –4x+2x–8 x 2 (x+1 ) × x (x+4 ) (x+2 ) 2 = 1 x–4 × x(x–4 ) +2(x–4 ) x+1 × 1 x+2 = 1 x–4 × (x–4 ) (x+2 ) x+1 × 1 x+2 = 1 x+1 (m+n ) 2 – x 2 (m+x ) 2 – n 2 × (m–n ) 2 – x 2 m 2 +mn–mx = [(m+n ) –x ] [(m+n ) +x ] [(m+x ) –n ] [(m+x ) +n ] × [(m–n ) –x ] [(m–n ) +x ] m(m+n–x ) = [m+n–x ] [m+n+x ] [m+x–n ] [m+x+n ] × [m–n–x ][m–n+x ] m (m+n–x ) = m–n–x m 2 a 3 +2a b 2 2a x 2 –2ax × x 3 –x a 2 x+ b 2 x × x x+1 = 2a ( a 2 + b 2 ) 2a x (x–1 ) × x ( x 2 –1 ) x ( a 2 + b 2 ) × x x+1 = 1 x–1 × (x–1 ) (x+1 ) × 1 x+1 =1 a 2 –5a+6 3a–15 × 6a a 2 –a–30 × a 2 –25 2a–4 = (a–3 )(a–2 ) 3 (a–5 ) × 6 a (a–6 )(a+5 ) × (a+5 ) (a–5 ) 2 (a–2 ) = a(a–3 ) a–6 x 2 –3xy–10 y 2 x 2 –2xy–8 y 2 × x 2 –16 y 2 x 2 +4xy × x 2 –6xy x+2y = (x–5y )(x+2y ) (x–4y ) (x+2y ) × (x–4y ) (x+4y ) x (x+4y ) × x (x–6y ) x+2y = (x–5y ) (x–6y ) x+2y x 2 +4ax+4 a 2 3ax–6 a 2 × 2ax–4 a 2 ax+a × 6a+6x x 2 +3ax+2 a 2 = (x+2a ) 2 3 a (x–2a ) × 2 a (x–2a ) a (x+1 ) × (a+x ) (x+2a ) (x+a ) = 4(x+2a ) a(x+1 ) a 2 –81 2 a 2 +10a × a+11 a 2 –36 × 2a–12 2a+18 × a 3 +5 a 2 2a+22 = (a+9 )(a–9 ) 2 a (a+5 ) × a+11 (a–6 )(a+6 ) × 2 (a–6 ) 2 (a+9 ) × a 2 (a+5 ) 2 (a+11 ) = a(a–9 ) 4(a+6 ) a 2 +7a+10 a 2 –6a–7 × a 2 –3a–4 a 2 +2a–15 × a 3 –2 a 2 –3a a 2 –2a–8 = (a+5 ) (a+2 ) (a–7 )(a+1 ) × (a–4 ) (a+1 ) (a+5 )(a–3 ) × a( a 2 –2a–3 ) (a–4 ) (a+2 ) = 1 a–7 × 1 a–3 × a (a–3 )(a+1 ) = a(a+1 ) a–7 x 4 +27x x 3 – x 2 +x × x 4 +x x 4 –3 x 3 +9 x 2 × 1 x (x+3 ) 2 × x 2 x–3 = x ( x 3 +27 ) x ( x 2 –x+1 ) × x ( x 3 +1 ) x 2 ( x 2 –3x+9 ) × 1 x (x+3 ) 2 × x 2 x–3 = (x+3 ) ( x 2 –3x+9 ) x 2 –x+1 × (x+1 )( x 2 –x+1 ) x 2 –3x+9 × 1 (x+3 ) 2 × 1 x–3 = x+1 (x+3 ) (x–3 ) = x+1 x 2 –9 Categories: Capítulo XIV