Comparte esto 👍👍DESCARGACAPITULO XXIV Ecuaciones simultaneas con dos incognitasEjercicio 184Resolver por determinantes: { 7x+8y=29 5x+11y=26 x= | 29 8 26 11 | | 7 8 5 11 | = 29( 11 ) –8( 26 ) 7( 11 ) –5( 8 ) = 319–208 77–40 = 37 =3 y= | 7 29 5 26 | | 7 8 5 11 | = 7( 26 ) –29( 5 ) 7( 11 ) –5( 8 ) = 182–145 77–40 = 37 37 =1 Sol{ x=3 y=1 { 3x–4y=13 8x–5y=–5 x= | 13 –4 –5 –5 | | 3 –4 8 –5 | = 13(–5 ) –(–5 ) (–4 ) 3(–5 ) –8(–4 ) = –65–20 –15+32 = – 17 =–5 y= | 3 13 8 –5 | | 3 –4 8 –5 | = (–5 ) ( 3 ) –13( 8 ) 3(–5 ) –8(–4 ) = –15–104 –15+32 =– 17 =–7 Sol{ x=–5 y=–7 { 13x–31y=–326 25x+37y=146 x= | –326 –31 146 37 | | 13 –31 25 37 | = –326( 37 ) –146(–31 ) 13( 37 ) –( 25 ) (–31 ) = –12062+4526 481+775 = – 1256 =–6 y= | 13 –326 25 146 | | 13 –31 25 37 | = 146( 13 ) –(–326 ) ( 25 ) 13( 37 ) –( 25 ) (–31 ) = 1898+8150 481+775 = 1256 =8 Sol{ x=–6 y=8 { 15x–44y=–6 32y–27x=–1 { 15x–44y=–6 –27x+32y=–1 x= | –6 –44 –1 32 | | 15 –44 –27 32 | = –6( 32 ) –(–1 ) (–44 ) 15( 32 ) –(–27 ) (–44 ) = –192–44 480–1188 = – 236 – = 1 3 y= | 15 –6 –27 –1 | | 15 –44 –27 32 | = (–1 ) ( 15 ) –(–6 ) (–27 ) 15( 32 ) –(–27 ) (–44 ) = –15–162 480–1188 = – 177 – = 1 4 Sol{ x= 1 3 y= 1 4 { 8x=–9y 2x+5+3y=3 1 2 { 8x+9y=0 2x+3y= 7 2 –5 { 8x+9y=0 2x+3y=– 3 2 2 { 8x+9y=0 4x+6y=–3 x= | 0 9 –3 6 | | 8 9 4 6 | = 6( 0 ) –9(–3 ) 8( 6 ) –4( 9 ) = 27 48–36 = = 9 4 =2 1 4 y= | 8 0 4 –3 | | 8 9 4 6 | = 8(–3 ) –4( 0 ) 8( 6 ) –4( 9 ) = –24 48–36 = 12 =2 Sol{ x=2 1 4 y=2 { ax–by=–1 ax+by=7 x= | –1 –b 7 b | | a –b a b | = –b–7(–b ) ab–a(–b ) = –b+7b ab+ab = b 2 a b = 3 a y= | a –1 a 7 | | a –b a b | = 7a–a(–1 ) ab–a(–b ) = 7a+a ab+ab = a 2 a b = 4 b Sol{ x= 3 a y= 4 b { 3x–(y+2 ) =2y+1 5y–(x+3 ) =3x+1 { 3x–y–2–2y=1 5y–x–3–3x=1 { 3x–3y=1+2 5y–4x=3+1 { 3x–3y=3 1 3 5y–4x=4 { x–y=1 –4x+5y=4 x= | 1 –1 4 5 | | 1 –1 –4 5 | = 5( 1 ) –4(–1 ) 5( 1 ) –(–4 ) (–1 ) = 5+4 5–4 =9 y= | 1 1 –4 4 | | 1 –1 –4 5 | = 4( 1 ) –4(–1 ) 5( 1 ) –(–4 ) (–1 ) = 4+4 5–4 =8 Sol{ x=9 y=8 { ax+2y=2 ax 2 –3y=–1 ( 2 ) { ax+2y=2 ax–6y=–2 x= | 2 2 –2 –6 | | a 2 a –6 | = 2(–6 ) –(–2 ) ( 2 ) a(–6 ) –2a = –12+4 –6a–2a = – 8 – 8 a = 1 a y= | a 2 a –2 | | a 2 a –6 | = a(–2 ) –2a a(–6 ) –2a = –2a–2a –6a–2a = – 4a – = 1 2 Sol{ x= 1 a y= 1 2 { x 4 + y 6 =–4 ( 12 ) x 8 – y 12 =0 ( 24 ) { 3x+2y=–48 3x–2y=0 x= | –48 2 0 –2 | | 3 2 3 –2 | = –2(–48 ) –( 2 ) ( 0 ) 3(–2 ) –2( 3 ) = 96 –6–6 = – 12 =–8 y= | 3 –48 3 0 | | 3 2 3 –2 | = 3( 0 ) –3(–48 ) 3(–2 ) –2( 3 ) = 144 –6–6 = – 12 =–12 Sol{ x=–8 y=–12 { 3x+ay=3a+1 x a +ay=2 a { 3x+ay=3a+1 x+ a 2 y=2a x= | 3a+1 a 2a a 2 | | 3 a 1 a 2 | = a 2 (3a+1 ) –2a( a ) 3 a 2 –a = 3 a 3 + a 2 –2 a 2 a(3a–1 ) = 3 a 3 – a 2 a(3a–1 ) = a 2 (3a–1 ) a (3a–1 ) =a y= | 3 3a+1 1 2a | | 3 a 1 a 2 | = 2a( 3 ) –(3a+1 ) 3 a 2 –a = 6a–3a–1 a(3a–1 ) = (3a–1 ) a (3a–1 ) = 1 a Sol{ x=a y= 1 a { x+2 3 – y–3 8 = 5 6 ( 24 ) y–5 6 – 2x–3 5 =0 ( 30 ) { 8(x+2 ) –3(y–3 ) =20 5(y–5 ) –6(2x–3 ) =0 { 8x+16–3y+9=20 5y–25–12x+18=0 { 8x–3y=20–25 –12x+5y=7 { 8x–3y=–5 –12x+5y=7 x= | –5 –3 7 5 | | 8 –3 –12 5 | = –5( 5 ) –7(–3 ) 8( 5 ) –(–12 ) (–3 ) = –25+21 40–36 = – 4 4 =–1 y= | 8 –5 –12 7 | | 8 –3 –12 5 | = 8( 7 ) –(–12 ) (–5 ) 8( 5 ) –(–12 ) (–3 ) = 56–60 40–36 = – 4 4 =–1 Sol{ x=–1 y=–1 { 3x–2y=5 mx+4y=2(m+1 ) x= | 5 –2 2(m+1 ) 4 | | 3 –2 m 4 | = 5( 4 ) –(–4 ) (m+1 ) 3( 4 ) –(–2 ) m = 20+4m+4 12+2m = 4m+24 2(m+6 ) = (m+6 ) 2 (m+6 ) =2 y= | 3 5 m 2(m+1 ) | | 3 –2 m 4 | = 6(m+1 ) –5m 3( 4 ) –(–2 ) m = 6m+6–5m 12+2m = m+6 2 (m+6 ) = 1 2 Sol{ x=2 y= 1 2 { 2x– 2y+3 17 =y+2 ( 17 ) 3y– 4x+1 21 =3x+5 ( 21 ) { 34x–2y–3=17y+34 63y–4x–1=63x+105 { 34x–2y–17y=3+34 63y–4x–63x=1+105 { 34x–19y=37 –67x+63y=106 x= | 37 –19 106 63 | | 34 –19 –67 63 | = 37( 63 ) –(–19 ) ( 106 ) 34( 63 ) –(–19 ) (–67 ) = 2331+2014 2142–1273 = 869 =5 y= | 34 37 –67 106 | | 34 –19 –67 63 | = 34( 106 ) –(–67 ) ( 37 ) 34( 63 ) –(–19 ) (–67 ) = 3604+2479 2142–1273 = 869 =7 Sol{ x=5 y=7 { x+y x–y =4 (x–y ) x–y–1 x+y+1 = 1 9 9(x+y+1 ) { x+y=4(x–y ) 9(x–y–1 ) =x+y+1 { x+y=4x–4y 9x–9y–9=x+y+1 { x+y–4x+4y=0 9x–9y–x–y=9+1 { –3x+5y=0 8x–10y=10 1 2 { –3x+5y=0 4x–5y=5 x= | 0 5 5 –5 | | –3 5 4 –5 | = 0(–5 ) –5( 5 ) –3(–5 ) –5( 4 ) = –25 15–20 = – – 5 =5 y= | –3 0 4 5 | | –3 5 4 –5 | = 0( 4 ) –3( 5 ) –3(–5 ) –5( 4 ) = –15 15–20 = – – 5 =3 Sol{ x=5 y=3 { x–y=2b x a+b + y a–b =2 { x–y=2b x(a–b ) +y(a+b ) (a+b ) (a–b ) =2 { x–y=2b ax–bx+ay+by=2( a 2 – b 2 ) { x–y=2b (a–b ) x+(a+b ) y=2( a 2 – b 2 ) x= | 2b –1 2( a 2 – b 2 ) a+b | | 1 –1 a–b a+b | = 2b(a+b ) +2( a 2 – b 2 ) a+b+(a–b ) = 2(a+b ) [ b +a– b ] a+ b +a– b = 2 (a+b )a 2 a =a+b y= | 1 2b a–b 2( a 2 – b 2 ) | | 1 –1 a–b a+b | = 2( a 2 – b 2 ) –2b(a–b ) a+b+(a–b ) = 2(a–b ) [a+ b – b ] a+ b +a– b = 2 (a–b )a 2 a =a–b Sol{ x=a+b y=a–b { x+9 x–9 = y+21 y+39 x+8 x–8 = y+19 y+11 { (x+9 ) (y+39 ) =(y+21 ) (x–9 ) (x+8 ) (y+11 ) =(y+19 ) (x–8 ) { xy +39x+9y+351= xy –9y+21x–189 xy +11x+8y+88= xy –8y+19x–152 { 39x+9y+9y–21x=–351–189 11x+8y+8y–19x=–88–152 { 18x+18y=–540 1 18 –8x+16y=–240 – 1 8 { x+y=–30 x–2y=30 x= | –30 1 30 –2 | | 1 1 1 –2 | = –30(–2 ) –( 30 ) ( 1 ) 1(–2 ) –( 1 ) ( 1 ) = 60–30 –2–1 = – 3 =–10 y= | 1 –30 1 30 | | 1 1 1 –2 | = 30( 1 ) –(–30 ) ( 1 ) 1(–2 ) –( 1 ) ( 1 ) = 30+30 –2–1 = – 3 =–20 Sol{ x=–10 y=–20 Categories: Capítulo XXIV