Comparte esto 👍👍DESCARGACAPITULO XXXI R a d i c a l e s Racionalización de expresiones conjugadasEjercicio 248Racionalizar el denominador de: 3– 2 1+ 2 = 3– 2 1+ 2 × 1– 2 1– 2 = 3– 2 –3 2 + 2 2 1– 2 2 = 3–4 2 +2 1–2 = 5–4 2 –1 =4 2 –5 5+2 3 4– 3 = 5+2 3 4– 3 × 4+ 3 4+ 3 = 20+8 3 +5 3 +2 3 2 4 2 – 3 2 = 20+13 3 +2( 3 ) 16–3 = 13 3 +26 13 = 13 ( 3 +2 ) 13 = 3 +2 2 – 5 2 + 5 = 2 – 5 2 + 5 × 2 – 5 2 – 5 = ( 2 – 5 ) 2 2 2 – 5 2 = 2 2 –2 2 × 5 + 5 2 2–5 = 2–2 10 +5 –3 = 7–2 10 –3 = 2 10 –7 3 7 +2 5 7 – 5 = 7 +2 5 7 – 5 × 7 + 5 7 + 5 = 7 2 +2 35 + 35 +2 5 2 7 2 – 5 2 = 7+3 35 +2( 5 ) 7–5 = 17+3 35 2 2 –3 5 2 2 + 5 = 2 –3 5 2 2 + 5 × 2 2 – 5 2 2 – 5 = 2 2 2 –6 10 – 10 +3 5 2 (2 2 ) 2 – 5 2 = 2( 2 ) –7 10 +3( 5 ) 4( 2 ) –5 = 4–7 10 +15 8–5 = 19–7 10 3 19 5 2 –4 3 = 19 5 2 –4 3 × 5 2 +4 3 5 2 +4 3 = 19(5 2 +4 3 ) (5 2 ) 2 – (4 3 ) 2 = 19(5 2 +4 3 ) 25( 2 ) –16( 3 ) = 19(5 2 +4 3 ) 50–48 = 19(5 2 +4 3 ) 2 3 2 7 2 –6 3 = 3 2 7 2 –6 3 × 7 2 +6 3 7 2 +6 3 = 21 2 2 +18 6 (7 2 ) 2 – (6 3 ) 2 = 21( 2 ) +18 6 49( 2 ) –36( 3 ) = 42+18 6 98–108 = 2 (21+9 6 ) – =– 21+9 6 5 4 3 –3 7 2 3 +3 7 = 4 3 –3 7 2 3 +3 7 × 2 3 –3 7 2 3 –3 7 = 8 3 2 –6 21 –12 21 +9 7 2 (2 3 ) 2 – (3 7 ) 2 = 8( 3 ) –18 21 +9( 7 ) 4( 3 ) –9( 7 ) = 24–18 21 +63 12–63 = 87–18 21 –51 = 18 21 –87 51 = 3 (6 21 –29 ) = 6 21 –29 17 5 2 –6 3 4 2 –3 3 = 5 2 –6 3 4 2 –3 3 × 4 2 +3 3 4 2 +3 3 = 20 2 2 –24 6 +15 6 –18 3 2 (4 2 ) 2 – (3 3 ) 2 = 20( 2 ) –9 6 –18( 3 ) 16( 2 ) –9( 3 ) = 40–9 6 –54 32–27 = 40–9 6 –54 32–27 =– 14+9 6 5 7 +3 11 5 7 +4 11 = 7 +3 11 5 7 +4 11 × 5 7 –4 11 5 7 –4 11 = 5 7 2 +15 77 –4 77 –12 1 1 2 (5 7 ) 2 – (4 11 ) 2 = 5( 7 ) +11 77 –12( 11 ) 25( 7 ) –16( 11 ) = 35+11 77 –132 175–176 =97–11 77 5 + 2 7+2 10 = 5 + 2 7+2 10 × 7–2 10 7–2 10 = 7 5 +7 2 –2 50 –2 20 7 2 – (2 10 ) 2 = 7 5 +7 2 –2 5 2 .2 –2 5. 2 2 49–4( 10 ) = 7 5 +7 2 –10 2 –4 5 9 = 3 5 –3 2 9 = 3 ( 5 – 2 ) = 5 – 2 3 9 3 –3 2 6– 6 = 9 3 –3 2 6– 6 × 6+ 6 6+ 6 = 54 3 –18 2 +9 18 –3 12 6 2 – 6 2 = 54 3 –18 2 +9 3 2 .2 –3 3. 2 2 36–6 = 54 3 –18 2 +27 2 –6 3 30 = 48 3 +9 2 30 = 3 (16 3 +3 2 ) = 16 3 +3 2 10 a + x 2 a + x = a + x 2 a + x × 2 a – x 2 a – x = 2 a 2 +2 ax – ax – x 2 (2 a ) 2 – (x ) 2 = 2a+ ax –x 4a–x x – x–1 x + x–1 = x – x–1 x + x–1 × x – x–1 x – x–1 = x 2 – x(x–1 ) – x(x–1 ) + (x–1 ) 2 x 2 – (x–1 ) 2 = x–2 x(x–1 ) +x–1 x–(x–1 ) = 2x–2 x(x–1 ) –1 x – x +1 =2x–2 x(x–1 ) –1 a – a+1 a + a+1 = a – a+1 a + a+1 × a – a+1 a – a+1 = ( a – a+1 ) 2 (a ) 2 – ( a+1 ) 2 = a–2 a(a+1 ) +a+1 a–(a+1 ) = 2a–2 a(a+1 ) +1 a – a –1 =2 a(a+1 ) –2a–1 x+2 + 2 x+2 – 2 = x+2 + 2 x+2 – 2 × x+2 + 2 x+2 + 2 = ( x+2 + 2 ) 2 ( x+2 ) 2 – (2 ) 2 = x+2+2 2(x+2 ) +2 x+ 2 – 2 = x+2 2(x+2 ) +4 x a+4 – a a+4 + a = a+4 – a a+4 + a × a+4 – a a+4 – a = ( a+4 – a ) 2 ( a+4 ) 2 – (a ) 2 = a+4–2 a(a+4 ) +a a +4– a = 2a–2 a(a+4 ) +4 4 = 2 (a– a(a+4 ) +2 ) = a– a(a+4 ) +2 2 a+b – a–b a+b + a–b = a+b – a–b a+b + a–b × a+b – a–b a+b – a–b = ( a+b – a–b ) 2 ( a+b ) 2 – ( a–b ) 2 = a+ b –2 a 2 – b 2 +a– b a+b–(a–b ) = 2a–2 a 2 – b 2 a +b– a +b = 2 (a– a 2 – b 2 ) 2 b = a– a 2 – b 2 b Categories: Capítulo XXXI