CAPITULO XXXI
R a d i c a l e s
ResoluciΓ³n de Ecuaciones con radicales que se reducen a primer grado
R a d i c a l e s
ResoluciΓ³n de Ecuaciones con radicales que se reducen a primer grado
- Ejercicio252
Resolver las ecuaciones:
- x + x+5 = 10 x x 2 + x( x+5 ) =10 x+ x( x+5 ) =10 ( x( x+5 ) ) 2 = ( 10βx ) 2 x 2 +5x =100β20x+ x 2 5x+20x =100 25x =100 x = 25 x =4
- 4xβ11 +2 x = 55 4xβ11 ( 4xβ11 ) 2 +2 x( 4xβ11 ) =55 4xβ11+2 x( 4xβ11 ) =55 2 x( 4xβ11 ) =66β4x 2 x( 4xβ11 ) = 2 ( 33β2x ) ( x( 4xβ11 ) ) 2 = ( 33β2x ) 2 4 x 2 β11x =1089β132x+ 4 x 2 132xβ11x =1089 121x =1089 x = 121 x =9
- x β xβ7 = 4 x x 2 β x( xβ7 ) =4 xβ x 2 β7x =4 ( xβ4 ) 2 = ( x 2 β7x ) 2 x 2 β8x+16 = x 2 β7x β8x+7x =β16 βx =β16 x =16
- x β2 x +4 = x +1 x +13 ( x β2 ) ( x +13 ) =( x +1 ) ( x +4 ) x 2 +13 x β2 x β26 = x 2 +4 x + x +4 11 x β5 x =26+4 6 x =30 x = 6 ( x ) 2 = 5 2 x =25
- 6 x+8 = x+8 β x 6 = ( x+8 ) 2 β x( x+8 ) 6 =x+8β x 2 +8x x 2 +8x =x+8β6 ( x 2 +8x ) 2 = ( x+2 ) 2 x 2 +8x = x 2 +4x+4 8xβ4x =4 4x =4 x = 4 4 x =1
- xβ3 + 8 x+9 = x+9 ( xβ3 ) ( x+9 ) +8 x+9 = x+9 x 2 +6xβ27 +8 = ( x+9 ) 2 x 2 +6xβ27 +8 =x+9 ( x 2 +6xβ27 ) 2 = ( x+1 ) 2 x 2 +6xβ27 = x 2 +2x+1 6xβ2x =27+1 4x =28 x = 4 x =7
- x +4 x β2 = x +11 x β1 ( x +4 ) ( x β1 ) =( x +11 ) ( x β2 ) x 2 β x +4 x β4 = x 2 β2 x +11 x β22 3 x =9 x β22+4 β6 x =β18 x = β β 6 ( x ) 2 = 3 2 x =9
- 2 x+6 β 4xβ3 = 9 4xβ3 2 ( x+6 ) ( 4xβ3 ) β ( 4xβ3 ) 2 =9 2 4 x 2 β3x+24xβ18 β4x+3 =9 2 4 x 2 +21xβ18 =9β3+4x 2 ( 4 x 2 +21xβ18 ) 2 = 2 ( 2x+3 ) 2 4 x 2 +21xβ18 = 4 x 2 +12x+9 21xβ12x =18+9 9x =27 x = 9 x =3
- x β2 x +2 = 2 x β5 2 x β1 ( x β2 ) ( 2 x β1 ) =( 2 x β5 ) ( x +2 ) 2 x 2 β x β 4 x +2 = 2 x 2 +4 x β 5 x β10 2+10 =4 x 12 =4 x ( 4 ) 2 = ( x ) 2 x =9
- x+14 β xβ7 = 6 xβ7 ( x+14 ) ( xβ7 ) β ( xβ7 ) 2 =6 x 2 +7xβ98 βx+7 =6 x 2 +7xβ98 =6β7+x ( x 2 +7xβ98 ) 2 = ( xβ1 ) 2 x 2 +7xβ98 = x 2 β2x+1 7x+2x =98+1 9x =99 x = 9 x =11
