CAPITULO XXXII
CANTIDADES IMAGINARIAS
CANTIDADES IMAGINARIAS
- Ejercicio 253
Reducir a la forma de una cantidad real multiplicada por
β1
oi
- β a 2 = ( β1 ) ( a 2 ) = β1 a =ai
- β2 = ( β1 ) ( 2 ) = β1 2 = 2 i
- 2 β9 =2 β 3 2 =2 ( β1 ) ( 3 ) 2 =2.3 β1 =6i
- β81 = β 9 2 =3 β1 =3i
- β6 = ( β1 ) ( 6 ) = β1 6 = 6 i
- 3 β b 4 =3 ( β1 ) ( b 4 ) =3 b 2 β1 =3 b 2 i
- β12 = ( β1 ) ( 2 2 ) ( 3 ) =2 β1 3 =2 3 i
- β7 = ( β1 ) ( 7 ) = β1 7 = 7 i
- β27 = ( β1 ) ( 3 2 ) ( 3 ) =3 β1 3 =3 3 i
- β4 m 4 = ( β1 ) ( 2 2 ) ( m 4 ) =2 m 2 β1 =2 m 2 i
- β 1 16 = ( β1 ) ( 1 4 2 ) = 1 4 β1 = 1 4 i
- β a 2 β b 2 = β( a 2 + b 2 ) = ( β1 ) ( a 2 + b 2 ) = β1 a 2 + b 2 = a 2 + b 2 i