CAPITULO XXXIII
Ecuaciones de segundo grado
Ecuaciones de segundo grado
- Ejercicio 265
Resolver las siguientes ecuaciones por la fΓ³rmula general:
x=
βb Β±
b
2
β4ac
2a
- 3 x 2 β5x+2 =0 x = 5 Β± 5 2 β4( 3 ) ( 2 ) 2( 3 ) x = 5 Β± 25β24 6 x = 5 Β± 1 6 x 1 = 6 6 x 1 =1 x 2 = x 2 = 2 3
- 4 x 2 +3xβ22 =0 x = β3 Β± 3 2 β4( 4 ) ( β22 ) 2( 4 ) x = β3 Β± 9β352 8 x = β3 Β± 361 8 x = β3 Β± 19 8 x 1 = 8 x 1 =2 x 2 = β x 2 =β 11 4
- x 2 +11x =β24 x 2 +11x+24 =0 x = β11 Β± 1 1 2 β4( 1 ) ( 24 ) 2( 1 ) x = β11 Β± 121β96 2 x = β11 Β± 25 2 x = β11 Β± 5 2 x 1 = β 2 x 1 =β8 x 2 = β 2 x 2 =β3
- x 2 =16xβ63 x 2 β16x+63 =0 x = 16 Β± 1 6 2 β4( 1 ) ( 63 ) 2( 1 ) x = 16 Β± 1 6 2 β4( 1 ) ( 63 ) 2( 1 ) x = 16 Β± 256β252 2 x = 16 Β± 4 2 x = 16 Β± 2 2 x 1 = 2 x 1 =9 x 2 = 2 x 2 =7
- 12xβ4β9 x 2 =0 9 x 2 β12x+4 =0 x = 12 Β± 1 2 2 β4( 9 ) ( 4 ) 2( 9 ) x = 12 Β± 18 x = x = 2 3
- 5 x 2 β7xβ90 =0 x = 7 Β± 7 2 β4( 5 ) ( β90 ) 2( 5 ) x = 7 Β± 49+1800 10 x = 7 Β± 1849 10 x = 7 Β± 43 10 x 1 = 5 0 1 0 x 1 =5 x 2 = β x 2 =β 18 5
- 6 x 2 =x+222 6 x 2 βxβ222 =0 x = 1 Β± 1β4( 6 ) ( β222 ) 2( 6 ) x = 1 Β± 1+5328 12 x = 1 Β± 73 12 x 1 = x 1 = 37 6 x 2 = β 12 x 2 =β6
- x+11 =10 x 2 10 x 2 βxβ11 =0 x = 1 Β± 1β4( 10 ) ( β11 ) 2( 10 ) x = 1 Β± 1+440 20 x = 1 Β± 21 20 x 1 = x 1 = 11 10 x 2 = β 20 20 x 2 =β1
- 49 x 2 β70x+25 =0 x = 70 Β± 7 0 2 β4( 49 ) ( 25 ) 2( 49 ) x = 70 Β± 98 x = x = 5 7
- 12xβ7 x 2 +64 =0 7 x 2 β12xβ64 =0 x = 12 Β± 1 2 2 β4( 7 ) ( β64 ) 2( 7 ) x = 12 Β± 144+1792 14 x = 12 Β± 1936 14 x = 12 Β± 44 14 x 1 = 14 x 1 =4 x 2 = β x 2 =β 16 7
- x 2 =β15xβ56 x 2 +15x+56 =0 x = β15 Β± 1 5 2 β4( 1 ) ( 56 ) 2( 1 ) x = β15 Β± 225β224 2 x = β15 Β± 1 2 x 1 = β 2 x 1 =β7 x 2 = β 2 x 2 =β8
- 32 x 2 +18xβ17 =0 x = β18 Β± 1 8 2 β4( 32 ) ( β17 ) 2( 32 ) x = β18 Β± 324+2176 64 x = β18 Β± 2500 64 x = β18 Β± 50 64 x 1 = 32 x 1 = 1 2 x 2 = β x 2 =β 17 16
- 176x =121+64 x 2 64 x 2 β176x+121 =0 x = β176 Β± 17 6 2 β4( 64 ) ( 121 ) 2( 64 ) x = β176 Β± 128 x =β x =β 11 8
- 8x+5 =36 x 2 36 x 2 β8xβ5 =0 x = 8 Β± 8 2 β4( 36 ) ( β5 ) 2( 36 ) x = 8 Β± 64+720 72 x = 8 Β± 784 72 x = 8 Β± 28 72 x 1 = 36 x 1 = 1 2 x 2 =β x 2 =β 5 18
- 27 x 2 +12xβ7 =0 x = β12 Β± 1 2 2 β4( 27 ) ( β7 ) 2( 27 ) x = β12 Β± 144+756 54 x = β12 Β± 900 54 x = β12 Β± 30 54 x 1 = 18 x 1 = 1 3 x 2 =β x 2 =β 7 9
- 15x =25 x 2 +2 25 x 2 β15x+2 =0 x = 15 Β± 1 5 2 β4( 25 ) ( 2 ) 2( 25 ) x = 15 Β± 225β200 50 x = 15 Β± 25 50 x = 15 Β± 5 50 x 1 = 2 0 5 0 x 1 = 2 5 x 2 = 1 0 5 0 x 2 = 1 5
- 8 x 2 β2xβ3 =0 x = 2 Β± 2 2 β4( 8 ) ( β3 ) 2( 8 ) x = 2 Β± 4+96 16 x = 2 Β± 100 16 x = 2 Β± 10 16 x 1 = x 1 = 3 4 x 2 = β 8 x 2 =β 1 2
- 105 =x+2 x 2 2 x 2 +xβ105 =0 x = β1 Β± 1β4( 2 ) ( β105 ) 2( 2 ) x = β1 Β± 1β4( 2 ) ( β105 ) 4 x = β1 Β± 1+840 4 x = β1 Β± 841 4 x = β1 Β± 29 4 x 1 = 4 x 1 =7 x 2 = β x 2 =β 15 2