CAPITULO XXXIII
Ecuaciones de segundo grado
Ecuaciones de segundo grado
- Ejercicio 267
Resolver las siguientes ecuaciones aplicando la fΓ³rmula particular:
x=β
m
2
Β±
m
2
4
βn
- x 2 β3x+2 =0 m=β3 n=2 x= 3 2 Β± ( β3 ) 2 4 β2 x= 3 2 Β± 9 4 β2 x= 3 2 Β± 9β8 4 x= 3 2 Β± 1 4 x= 3 2 Β± 1 2 x 1 = 3 2 + 1 2 = 2 x 1 =2 x 2 = 3 2 β 1 2 = 2 2 x 2 =1
- x 2 β2xβ15 =0 m=β2 n=β15 x= 2 2 Β± ( β2 ) 2 4 β( β15 ) x=1 Β± 4 4 +15 x=1 Β± 1+15 x=1 Β± 16 x=1 Β± 4 x 1 =1+4 x 1 =5 x 2 =1β4 x 2 =β3
- x 2 =19xβ88 x 2 β19x+88 =0 m=β19 n=88 x= 19 2 Β± ( β19 ) 2 4 β88 x= 19 2 Β± 361 4 β88 x= 19 2 Β± 361β352 4 x= 19 2 Β± 9 4 x= 19 2 Β± 3 2 x 1 = 19 2 + 3 2 = 2 x 1 =11 x 2 = 19 2 β 3 2 = 2 x 2 =8
- x 2 +4x =285 x 2 +4xβ285 =0 m=4 n=β285 x=β 2 Β± 4 2 4 β( β285 ) x=β2 Β± 4+285 x=β2 Β± 289 x=β2 Β± 17 x 1 =β2+17 x 1 =15 x 2 =β2β17 x 2 =β19
- 5x( xβ1 ) β2( 2 x 2 β7x ) =β8 5 x 2 β5xβ4 x 2 +14x+8 =0 x 2 +9x+8 =0 m=9 n=8 x=β 9 2 Β± 9 2 4 β8 x=β 9 2 Β± 81 4 β8 x=β 9 2 Β± 81β32 4 x=β 9 2 Β± 49 4 x=β 9 2 Β± 7 2 x 1 =β 9 2 + 7 2 = β9+7 2 =β 2 2 x 1 =β1 x 2 =β 9 2 β 7 2 = β9β7 2 =β 2 x 2 =β8
- x 2 β( 7x+6 ) =x+59 x 2 β7xβ6βxβ59 =0 x 2 β8xβ65 =0 m=β8 n=β65 x= 2 Β± 8 2 4 β( β65 ) x=4 Β± 4 +65 x=4 Β± 16+65 x=4 Β± 81 x=4 Β± 9 x 1 =4+9 x 1 =13 x 2 =4β9 x 2 =β5
- ( xβ1 ) 2 +11x+199 =3 x 2 β ( xβ2 ) 2 x 2 β2x+1+11x+199 =3 x 2 β( x 2 β4x+4 ) x 2 +9x+200 =3 x 2 β x 2 +4xβ4 x 2 +9x+200β2 x 2 β4x+4 =0 β x 2 +5x+204 =0 x 2 β5xβ204 =0 m=β5 n=β204 x= 5 2 Β± ( β5 ) 2 4 β( β204 ) x= 5 2 Β± 25 4 +204 x= 5 2 Β± 25+816 4 x= 5 2 Β± 841 4 x= 5 2 Β± 29 2 x 1 = 5 2 + 29 2 = 5+29 2 = 2 x 1 =17 x 2 = 5 2 β 29 2 = 5β29 2 =β 2 x 2 =β12
- ( xβ2 ) ( x+2 ) β7( xβ1 ) =21 x 2 β4β7x+7 =21 x 2 β7x+3β21 =0 x 2 β7xβ18 =0 m=β7 n=β17 x= 7 2 Β± ( β7 ) 2 4 β( β18 ) x= 7 2 Β± 49 4 +18 x= 7 2 Β± 49+72 4 x= 7 2 Β± 121 4 x= 7 2 Β± 11 2 x 1 = 7 2 + 11 2 = 7+11 2 = 2 x 1 =9 x 2 = 7 2 β 11 2 = 7β11 2 =β 2 x 2 =β2
- 2 x 2 β( xβ2 ) ( x+5 ) =7( x+3 ) 2 x 2 β( x 2 +3xβ10 ) =7x+21 2 x 2 β x 2 β3x+10β7xβ21 =0 x 2 β10xβ11 =0 m=β10 n=β11 x= 2 Β± ( β10 ) 2 4 β( β11 ) x=5 Β± 4 +11 x=5 Β± 25+11 x=5 Β± 36 x=5 Β± 6 x 1 =5+6 x 1 =11 x 2 =5β6 x 2 =β1
- ( xβ1 ) ( x+2 ) β( 2xβ3 ) ( x+4 ) βx+14 =0 x 2 + x β2β( 2 x 2 +8xβ3xβ12 ) β x +14 =0 x 2 β2 x 2 β5x+12+12 =0 β x 2 β5x+24 =0 x 2 +5xβ24 =0 m=5 n=β24 x=β 5 2 Β± 5 2 4 β( β24 ) x=β 5 2 Β± 25 4 +24 x=β 5 2 Β± 25+96 4 x=β 5 2 Β± 121 4 x=β 5 2 Β± 11 2 x 1 =β 5 2 + 11 2 = β5+11 2 = 2 x 1 =3 x 2 =β 5 2 β 11 2 = β5β11 2 =β 2 x 2 =β8