CAPITULO XXXVI
ECUACIONES BINOMIAS Y TRINOMIAS
ECUACIONES BINOMIAS Y TRINOMIAS
- Ejercicio 284
Resolver las ecuaciones:
- x 6 β7 x 3 β8 =0 x 6 β8 x 3 + x 3 β8 =0 x 3 ( x 3 β8 ) +( x 3 β8 ) =0 ( x 3 β8 ) ( x 3 +1 ) =0 ( xβ2 ) ( x 2 +2x+4 ) ( x+1 ) ( x 2 βx+1 ) =0 x 1 β2 =0 x 1 =2 x 2 +1 =0 x 2 =β2 x 2 +2x+4 =0 x = β2 Β± 2 2 β4( 1 ) ( 4 ) 2( 1 ) x = β2 Β± 4β16 2 x = β2 Β± β12 2 x = β2 Β± ( β1 ) ( 3 ) ( 2 2 ) 2 x = β2 Β± 2 β1 3 2 x = 2 ( β1 Β± 3 i ) 2 x 3 =β1+ 3 i x 4 =β1β 3 i x 2 βx+1 =0 x = β( β1 ) Β± ( β1 ) 2 β4( 1 ) ( 1 ) 2( 1 ) x = 1 Β± 1β4 2 x = 1 Β± β1 3 2 x = 1 Β± 3 i 2 x 5 = 1+ 3 i 2 x 6 = 1β 3 i 2
- x 6 +30 x 3 +81 =0 x 6 +27 x 3 +3 x 3 +81 =0 x 3 ( x 3 +27 ) +3( x 3 +27 ) =0 ( x 3 +3 ) ( x 3 +27 ) =0 ( x 3 +3 ) ( x+3 ) ( x 2 β3x+9 ) =0 x 1 3 +3 =0 x 1 3 =β3 x 1 = β3 3 x 1 =β 33 x 2 +3 =0 x 2 =β3 x 2 β3x+9 =0 x = β( β3 ) Β± ( β3 ) 2 β4( 1 ) ( 9 ) 2( 1 ) x = 3 Β± 9β36 2 x = 3 Β± β27 2 x = 3 Β± ( β1 ) ( 3 3 ) 2 x = 3 Β± 3 3 β1 2 x = 3 Β± 3 3 i 2 x 3 = 3β3 3 i 2 x 4 = 3+3 3 i 2
- 8 x 6 +15 x 3 β2 =0 8 x 6 +16 x 3 β x 3 β2 =0 8 x 3 ( x 2 +2 ) β( x 3 +2 ) =0 ( 8 x 3 β1 ) ( x 3 +2 ) =0 8 x 1 3 β1 =0 8 x 1 3 =1 x 1 3 = 1 8 x 1 = 1 8 x 1 = 1 2 x 2 3 +2 =0 x 2 3 =β2 x 2 = β2 3 x 2 =β 23
- x 8 β41 x 4 +400 =0 x 8 β16 x 4 β25 x 4 +400 =0 x 4 ( x 4 β16 ) β25( x 4 β16 ) =0 ( x 4 β25 ) ( x 4 β16 ) =0 ( x 2 +5 ) ( x 2 β5 ) ( x 2 β4 ) ( x 2 +4 ) =0 ( x 2 +5 ) ( x 2 β5 ) ( x 2 +4 ) ( x+2 ) ( xβ2 ) =0 x 1 +2 =0 x 1 =β2 x 2 β2 =0 x 2 =2 x 2 +5 =0 x 2 =β5 x = Β± β5 x 3 = 5 i x 4 =β 5 i x 2 β5 =0 x 2 =5 x = Β± 5 x 5 = 5 x 6 =β 5 x 2 +4 =0 x 2 =β4 x = Β± β4 x = Β± ( β1 ) ( 2 2 ) x = Β± 2 β1 x = Β± 2i x 7 =2i x 8 =β2i
- x 10 β33 x 5 +32 =0 x 10 β x 5 β32 x 5 +32 =0 x 5 ( x 2 β1 ) β32( x 5 β1 ) =0 ( x 5 β32 ) ( x 5 β1 ) =0 x 5 β32 =0 x 5 =32 x 1 = 325 x 1 =2 x 5 β1 =0 x 5 =1 x = 15 x 2 =1
- x β4 β13 x β2 +36 =0 ( x β2 β9 ) ( x β2 β4 ) =0 x β2 β9 =0 x β2 =9 1 x 2 =9 x 2 = 1 9 x = Β± 1 9 x = Β± 1 3 x 1 = 1 3 x 2 =β 1 3 x β2 β4 =0 x β2 =4 1 x 2 =4 x 2 = 1 4 x = Β± 1 4 x = Β± 1 2 x 3 = 1 2 x 4 =β 1 2
- x β6 +35 x β3 =β216 x β6 +35 x β3 +216 =0 x β6 +27 x β3 +8 x β3 +216 =0 x β3 ( x β3 +27 ) +8( x β3 +27 ) =0 ( x β3 +8 ) ( x β3 +27 ) =0 x β3 +8 =0 x β3 =β8 1 x 3 =β8 x 3 =β 1 8 x 1 = β 1 8 3 x 1 =β 1 2 x β3 +27 =0 x β3 =β27 1 x 3 =β27 x 3 =β 1 27 x 2 = β 1 27 3 x 2 =β 1 3
- x β10 =242 x β5 +243 x β10 β242 x β5 β243 =0 ( x β5 β243 ) ( x β5 +1 ) =0 x β5 β243 =0 x β5 =243 1 x 5 =243 x 5 = 1 243 x 1 = 1 243 5 x 1 = 1 3 x β5 +1 =0 x β5 =β1 1 x 5 =β1 x 5 =β1 x 2 = β1 5 x 2 =β1
- x 3 β9 x 3 2 +8 =0 x 3 β x 3 2 β8 x 3 2 +8 =0 x 3 2 ( x 3 2 β1 ) β8( x 3 2 β1 ) =0 ( x 3 2 β8 ) ( x 3 2 β1 ) =0 x 3 2 β8 =0 x 3 2 =8 ( x 3 2 ) 2 3 = 8 2 3 x 1 = 8 2 3 x 1 = 643 x 1 =4 x 3 2 β1 =0 ( x 3 2 ) 2 3 = 1 2 3 x 2 =1
- x+ x 1 2 =6 xβ2 x 1 2 +3 x 1 2 β6 =0 x 1 2 ( x 1 2 β2 ) +3( x 1 2 β2 ) =0 ( x 1 2 +3 ) ( x 1 2 β2 ) =0 x 1 2 +3 =0 x 1 2 =β3 ( x 1 2 ) 2 = ( β3 ) 2 x 1 =9 x 1 2 β2 =0 x 1 2 =2 ( x 1 2 ) 2 = 2 2 x 2 =4
- 3x =16 x β5 3xβ16 x 1 2 +5 =0 3xβ x 1 2 β15 x 1 2 +5 =0 x 1 2 ( 3 x 1 2 β1 ) β5( 3 x 1 2 β1 ) =0 ( x 1 2 β5 ) ( 3 x 1 2 β1 ) =0 x 1 2 β5 =0 x 1 2 =5 ( x 1 2 ) 2 = 5 2 x 1 =25 3 x 1 2 β1 =0 3 x 1 2 =1 x 1 2 = 1 3 ( x 1 2 ) 2 = ( 1 3 ) 2 x = 1 9
- 2 x 1 2 β5 x 1 4 +2 =0 2 x 1 2 β x 1 4 β4 x 1 4 +2 =0 x 1 4 ( 2 x 1 4 β1 ) β2( 2 x 1 4 β1 ) =0 ( x 1 4 β2 ) ( 2 x 1 4 β1 ) =0 x 1 4 β2 =0 x 1 4 =2 ( x 1 4 ) 4 = 2 4 x 1 =16 2 x 1 4 β1 =0 2 x 1 4 =1 x 1 4 = 1 2 ( x 1 4 ) 4 = ( 1 2 ) 4 x 2 = 1 16