CAPITULO VIII
Ecuaciones enteras de primer grado
Ecuaciones enteras de primer grado
- Ejercicio 80
Resolver las siguientes ecuaciones:
- x+3( xβ1 ) =6β4( 2x+3 ) x+3xβ3 =6β8xβ12 4xβ3 =β6β8x 4x+8x =3β6 12x =β3 x =β 3 x =β 1 4
- 5( xβ1 ) +16( 2x+3 ) =3( 2xβ7 ) βx 5xβ5+32x+48 =6xβ21βx 37x+43 =5xβ21 37xβ5x =β43β21 32x =β64 x =β 32 x =β2
- 2( 3x+3 ) β4( 5xβ3 ) =x( xβ3 ) βx( x+5 ) 6x+6β20x+12 = x 2 β3xβ x 2 β5x β14x+18 =β8x β14x+8x =β18 β6x =β18 x = β β 6 x =3
- 184β7( 2x+5 ) =301+6( xβ1 ) β6 184β14xβ35 =301+6xβ6β6 β14x+149 =289+6x β14xβ6x =289β149 β20x =140 x =β 20 x =β7
- 7( 18βx ) β6( 3β5x ) =β( 7x+9 ) β3( 2x+5 ) β12 126β7xβ18+30x =β7xβ9β6xβ15β12 23x+108 =β13xβ36 23x+13x =β108β36 36x =β144 x = β 36 x =β4
- 3x( xβ3 ) +5( x+7 ) βx( x+1 ) β2( x 2 +7 ) +4 =0 3 x 2 β9x+5x+35β x 2 βxβ 2 x 2 β14+4 =0 β5x+25 =0 β5x =β25 x = β β 5 x =5
- β3( 2x+7 ) +( β5x+6 ) β8( 1β2x ) β( xβ3 ) =0 β6xβ21β5x+6β8+16xβx+3 =0 4xβ20 =0 4x =20 x = 4 x =5
- ( 3xβ4 ) ( 4xβ3 ) =( 6xβ4 ) ( 2xβ5 ) 12 x 2 β9xβ16x+12 = 12 x 2 β30xβ8x+20 β25x+12 =β38x+20 38xβ25x =20β12 13x =8 x = 8 13
- ( 4β5x ) ( 4xβ5 ) =( 10xβ3 ) ( 7β2x ) 16xβ20β 20 x 2 +25x =70xβ 20 x 2 β21+6x 41xβ20 =76xβ21 41xβ76x =20β21 β35x =β1 x = 1 35
- ( x+1 ) ( 2x+5 ) =( 2x+3 ) ( xβ4 ) +5 2 x 2 +5x+2x+5 = 2 x 2 β8x+3xβ12+5 7x+5 =β5xβ7 7x+5x =β7β5 12x =β12 x =β 12 12 x =β1
- ( xβ2 ) 2 β ( 3βx ) 2 =1 [ ( xβ2 ) +( 3βx ) ] [ ( xβ2 ) β( 3βx ) ] =1 [ x β2+3β x ] [ xβ2β3+x ] =1 2xβ5 =1 2x =5+1 x = 2 x =3
- 14β( 5xβ1 ) ( 2x+3 ) =17β( 10x+1 ) ( xβ6 ) 14β( 10 x 2 +15xβ2xβ3 ) =17β( 10 x 2 β60x+xβ6 ) 14β 10 x 2 β15x+2x+3 =17β 10 x 2 +60xβx+6 β13x+17 =59x+23 β13xβ59x =23β17 β72x =6 x =β 6 x =β 1 12
- ( xβ2 ) 2 +x( xβ3 ) =3( x+4 ) ( xβ3 ) β( x+2 ) ( xβ1 ) +2 x 2 β4x+4+ x 2 β3x =3( x 2 +xβ12 ) β( x 2 +xβ2 ) +2 2 x 2 β7x+ 4 =3 x 2 +3xβ36β x 2 βx+ 2 + 2 2 x 2 β7x = 2 x 2 +2xβ36 β7xβ2x =β36 β9x =β36 x = β β 9 x =4
- ( 3xβ1 ) 2 β5( xβ2 ) β ( 2x+3 ) 2 β( 5x+2 ) ( xβ1 ) =0 9 x 2 β6x+1β5x+10β( 4 x 2 +12x+9 ) β( 5 x 2 β5x+2xβ2 ) =0 9 x 2 β11x+11β 4 x 2 β12xβ9β 5 x 2 +3x+2 =0 β20x+4 =0 x = β 4 β x = 1 5
- 2 ( xβ3 ) 2 β3 ( x+1 ) 2 +( xβ5 ) ( xβ3 ) +4( x 2 β5x+1 ) =4 x 2 β12 2( x 2 β6x+9 ) β3( x 2 +2x+1 ) +( x 2 β8x+15 ) + 4 x 2 β20x+4 = 4 x 2 β12 2 x 2 β12x+18β 3 x 2 β6xβ3+ x 2 β8x+15β20x+4 =β12 β46x+34 =β12 β46x =β34β12 x = β 46 β 46 x =1
- 5 ( xβ2 ) 2 β5 ( x+3 ) 2 +( 2xβ1 ) ( 5x+2 ) β10 x 2 =0 5( x 2 β4x+4 ) β5( x 2 +6x+9 ) +( 10 x 2 +4xβ5xβ2 ) β10 x 2 =0 5 x 2 β20x+20β 5 x 2 β30xβ45+ 10 x 2 βxβ2β 10 x 2 =0 β51xβ27 =0 β51x =27 x =β x =β 9 17
- x 2 β5x+15 =x( xβ3 ) β14+5( xβ2 ) +3( 13β2x ) x 2 β5x+15 = x 2 β3xβ14+5xβ10+39β6x β5x+ 15 =β4x+ 15 β5x+4x =0 βx =0 x =0
- 3( 5xβ6 ) ( 3x+2 ) β6( 3x+4 ) ( xβ1 ) β3( 9x+1 ) ( xβ2 ) =0 DividiendoΒ laΒ ecuaciΓ³nΒ paraΒ 3 ( 5xβ6 ) ( 3x+2 ) β2( 3x+4 ) ( xβ1 ) β( 9x+1 ) ( xβ2 ) =0 ( 15 x 2 +10xβ18xβ12 ) β2( 3 x 2 β3x+4xβ4 ) β( 9 x 2 β18x+xβ2 ) =0 15 x 2 β8xβ12β 6 x 2 β2x+8β 9 x 2 +17x+2 =0 7xβ2 =0 7x =2 x = 2 7
- 7 ( xβ4 ) 2 β3 ( x+5 ) 2 =4( x+1 ) ( xβ1 ) β2 7( x 2 β8x+16 ) β3( x 2 +10x+25 ) =4( x 2 β1 ) β2 7 x 2 β56x+112β3 x 2 β30xβ75 =4 x 2 β4β2 4 x 2 β86x+37 = 4 x 2 β6 β86x =β37β6 β86x =β43 x = β 43 β x = 1 2
- 5 ( 1βx ) 2 β6( x 2 β3xβ7 ) =x( xβ3 ) β2x( x+5 ) β2 5( 1β2x+ x 2 ) β6 x 2 +18x+42 = x 2 β3xβ2 x 2 β10xβ2 5β10x+5 x 2 β6 x 2 +18x+42 =β x 2 β13xβ2 β x 2 +8x+47 =β x 2 β13xβ2 8x+13x =β47β2 21x =β49 x =β x =β 7 3