Comparte esto 👍👍DESCARGACAPITULO XIV Operaciones con Fracciones Ejercicio 136Simplificar: 3x 4y × 8y 9x ÷ z 2 3 x 2 = 3 x 4 y × y 9 x × 3 x 2 z 2 = 2 x 2 z 2 5a b ÷ ( 2a b 2 × 5x 4 a 2 ) = 5a b ÷ ( 2 a b 2 × 5x a 2 ) = 5a b ÷ 5x 2a b 2 = 5 a b × 2a b 2 5 x = 2 a 2 b x a+1 a–1 × 3a–3 2a+2 ÷ a 2 +a a 2 +a+2 = a+1 a–1 × 3a–3 2a+2 × a 2 +a+2 a 2 +a = a+1 a–1 × 3 (a–1 ) 2 (a+1 ) × a 2 +a+2 a(a+1 ) = 3( a 2 +a+2 ) 2a(a+1 ) 64 a 2 –81 b 2 x 2 –81 × (x–9 ) 2 8a–9b ÷ 8 a 2 +9ab (x+9 ) 2 = 64 a 2 –81 b 2 x 2 –81 × (x–9 ) 2 8a–9b ÷ (x+9 ) 2 8 a 2 +9ab = (8a+9b ) (8a–9b ) (x+9 ) (x–9 ) × (x–9 ) 2 8a–9b × (x+9 ) 2 a (8a+9b ) = x 2 –81 a x 2 –x–12 x 2 –49 × x 2 –x–56 x 2 +x–20 ÷ x 2 –5x–24 x+5 = x 2 –x–12 x 2 –49 × x 2 –x–56 x 2 +x–20 × x+5 x 2 –5x–24 = (x–4 ) (x+3 ) (x–7 )(x+7 ) × (x–8 ) (x+7 ) (x+5 ) (x–4 ) × x+5 (x–8 ) (x+3 ) = 1 x–7 a 2 –8a+7 a 2 –11a+30 × a 2 –36 a 2 –1 ÷ a 2 –a–42 a 2 –4a–5 = a 2 –8a+7 a 2 –11a+30 × a 2 –36 a 2 –1 × a 2 –4a–5 a 2 –a–42 = (a–7 ) (a–1 ) (a–6 ) (a–5 ) × (a+6 ) (a–6 ) (a+1 ) (a–1 ) × (a–5 ) (a+1 ) (a–7 ) (a+6 ) =1 x 4 –27x x 2 +7x–30 × x 2 +20x+100 x 3 +3 x 2 +9x ÷ x 2 –100 x–3 = x 4 –27x x 2 +7x–30 × x 2 +20x+100 x 3 +3 x 2 +9x × x–3 x 2 –100 = x ( x 3 –27 ) (x+10 ) (x–3 ) × (x+10 ) 2 x ( x 2 +3x+9 ) × x–3 (x–10 )(x+10 ) = (x–3 )( x 2 +3x+9 ) (x–10 )( x 2 +3x+9 ) = x–3 x–10 a 2 +1 3a–6 ÷ ( a 3 +a 6a–12 × 4x+8 x–3 ) = a 2 +1 3(a–2 ) ÷ [ a( a 2 +1 ) (a–2 ) × (x+2 ) x–3 ] = a 2 +1 3(a–2 ) ÷ 2a( a 2 +1 ) (x+2 ) 3(a–2 ) (x–3 ) = a 2 +1 3 (a–2 ) × 3 (a–2 )(x–3 ) 2a ( a 2 +1 )(x+2 ) = x–3 2a(x+2 ) 8 x 2 –10x–3 6 x 2 +13x+6 × 4 x 2 –9 3 x 2 +2x ÷ 8 x 2 +14x+3 9 x 2 +12x+4 = 8 x 2 –10x–3 6 x 2 +13x+6 × 4 x 2 –9 3 x 2 +2x × 9 x 2 +12x+4 8 x 2 +14x+3 = 8 x 2 +2x–12x–3 6 x 2 +9x+4x+6 × (2x–3 ) (2x+3 ) x (3x+2 ) × (3x+2 ) 2 8 x 2 +2x+12x+3 = 2x(4x+1 ) –3(4x+1 ) 3x(2x+3 ) +2(2x+3 ) × (2x–3 ) (2x+3 ) x × (3x+2 ) 2x(4x+1 ) +3(4x+1 ) = (2x–3 )(4x+1 ) (3x+2 )(2x+3 ) × (2x–3 )(2x+3 ) x × (3x+2 ) (2x+3 ) (4x+1 ) = (2x–3 ) 2 x(2x+3 ) (a+b ) 2 – c 2 (a–b ) 2 – c 2 × (a+c ) 2 – b 2 a 2 +ab–ac ÷ a+b+c a 2 = (a+b ) 2 – c 2 (a–b ) 2 – c 2 × (a+c ) 2 – b 2 a 2 +ab–ac × a 2 a+b+c = [(a+b ) +c ] [(a+b ) –c ] [(a–b ) –c ] [(a–b ) +c ] × [(a+c ) +b ] [(a+c ) –b ] a (a+b+c ) × a 2 a+b+c = (a+b+c )(a+b–c ) (a–b–c )(a–b+c ) × (a+b+c ) (a–b+c ) a+b+c × a a+b+c = a(a+b–c ) a–b–c a 2 –5a b+ b 2 ÷ ( a 2 +6a–55 b 2 –1 × ax+3a a b 2 +11 b 2 ) = a(a–5 ) b(1+b ) ÷ [ (a+11 )(a–5 ) (b+1 ) (b–1 ) × a(x+3 ) b 2 (a+11 ) ] = a(a–5 ) b(1+b ) ÷ [ a(x+3 ) (a–5 ) b 2 (b+1 ) (b–1 ) ] = a (a–5 ) b (1+b ) × b 2 (b+1 )(b–1 ) a (x+3 )(a–5 ) = b(b–1 ) x+3 m 3 +6 m 2 n+9m n 2 2 m 2 n+7m n 2 +3 n 3 × 4 m 2 – n 2 8 m 2 –2mn– n 2 ÷ m 3 +27 n 3 16 m 2 +8mn+ n 2 = m 3 +6 m 2 n+9m n 2 2 m 2 n+7m n 2 +3 n 3 × 4 m 2 – n 2 8 m 2 –2mn– n 2 × 16 m 2 +8mn+ n 2 m 3 +27 n 3 = m( m 2 +6mn+9 n 2 ) n(2 m 2 +7mn+3 n 2 ) × (2m–n ) (2m+n ) 8 m 2 –4mn+2mn– n 2 × (4m+n ) 2 (m+3n ) ( m 2 –3mn+9 n 2 ) = m (m+3n ) 2 n(2 m 2 +mn+6mn+3 n 2 ) × (2m–n ) (2m+n ) 4m(2m–n ) +n(2m–n ) × (4m+n ) 2 (m+3n )( m 2 –3mn+9 n 2 ) = m(m+3n ) n[m(2m+n ) +3n(2m+n ) ] × (2m–n )(2m+n ) (4m+n ) (2m–n ) × (4m+n ) 2 m 2 –3mn+9 n 2 = m (m+3n ) n (m+3n ) (2m+n ) × 2m+n × 4m+n m 2 –3mn+9 n 2 = m(4m+n ) n( m 2 –3mn+9 n 2 ) ( a 2 –ax ) 2 a 2 + x 2 × 1 a 3 + a 2 x ÷ ( a 3 – a 2 x a 2 +2ax+ x 2 × a 2 – x 2 a 3 +a x 2 ) = [a(a–x ) ] 2 a 2 + x 2 × 1 a 2 (a+x ) ÷ [ a 2 (a–x ) (a+x ) 2 × (a–x )(a+x ) a ( a 2 + x 2 ) ] = a 2 (a–x ) 2 a 2 + x 2 × 1 a 2 (a+x ) ÷ a (a–x ) 2 (a+x ) ( a 2 + x 2 ) = (a–x ) 2 a 2 + x 2 × 1 (a+x ) × (a+x ) ( a 2 + x 2 ) a (a–x ) 2 = 1 a ( a 2 –3a ) 2 9– a 2 × 27– a 3 (a+3 ) 2 –3a ÷ a 4 –9 a 2 ( a 2 +3a ) 2 = ( a 2 –3a ) 2 9– a 2 × 27– a 3 (a+3 ) 2 –3a × ( a 2 +3a ) 2 a 4 –9 a 2 = [a(a–3 ) ] 2 (3–a )(3+a ) × (3–a )(9+3a+ a 2 ) a 2 +6a+9–3a × [a(a+3 ) ] 2 a 2 ( a 2 –9 ) = a 2 (a–3 ) 2 3+a × 9+3a+ a 2 a 2 +3a+9 × a 2 (a+3 ) 2 a 2 (a–3 ) (a+3 ) = a 2 (a–3 ) Categories: Capítulo XIV