Comparte esto 👍👍DESCARGACAPITULO VI PRODUCTOS Y COCIENTES NOTABLES Ejercicio 67Escribir, por simple inspección, el resultado de: (a+1 ) (a+2 ) = ( a ) 2 +(1+2 ) ( a ) +(1 × 2 ) = a 2 +3a+2 (x+2 ) (x+4 ) = ( x ) 2 +(2+4 ) ( x ) +(2 × 4 ) = x 2 +6x+8 (x+5 ) (x–2 ) = ( x ) 2 +(5–2 ) ( x ) +[5(–2 ) ] = x 2 +3x–10 (m–6 ) (m–5 ) = ( m ) 2 +(–6–5 ) ( m ) +[(–6 ) (–5 ) ] = m 2 –11m+30 (x+7 ) (x–3 ) = ( x ) 2 +(7–3 ) ( x ) +[7(–3 ) ] = x 2 +4x–21 (x+2 ) (x–1 ) = ( x ) 2 +(2–1 ) ( x ) +[2(–1 ) ] = x 2 +x–2 (x–3 ) (x–1 ) = ( x ) 2 +(–3–1 ) ( x ) +[(–3 ) (–1 ) ] = x 2 –4x+3 (x–5 ) (x+4 ) = ( x ) 2 +(–5+4 ) ( x ) +[(–5 ) × 4 ] = x 2 –x–20 (a–11 ) (a+10 ) = ( a ) 2 +(–11+10 ) ( a ) +[(–11 ) × 10 ] = a 2 –a–110 (n–19 ) (n+10 ) = ( n ) 2 +(–19+10 ) ( n ) +[(–19 ) × 10 ] = n 2 –9n–190 ( a 2 +5 ) ( a 2 –9 ) = ( a 2 ) 2 +(5–9 ) ( a 2 ) +[5(–9 ) ] = a 4 –4 a 2 –45 ( x 2 –1 ) ( x 2 –7 ) = ( x 2 ) 2 +(–1–7 ) ( x 2 ) +[(–1 ) (–7 ) ] = x 4 –8 x 2 +7 ( n 2 –1 ) ( n 2 +20 ) = ( n 2 ) 2 +(–1+20 ) ( n 2 ) +[(–1 ) × 20 ] = n 4 +19 n 2 –20 ( n 3 +3 ) ( n 3 –6 ) = ( n 3 ) 2 +(+3–6 ) ( n 3 ) +[3(–6 ) ] = n 6 –3 n 3 –18 ( x 3 +7 ) ( x 3 –6 ) = ( x 3 ) 2 +(7–6 ) ( x 3 ) +[7(–6 ) ] = x 6 + x 3 –42 ( a 4 +8 ) ( a 4 –1 ) = ( a 4 ) 2 +(8–1 ) ( a 4 ) +[8(–1 ) ] = a 8 +7 a 4 –8 ( a 5 –2 ) ( a 5 +7 ) = ( a 5 ) 2 +(–2+7 ) ( a 5 ) +[(–2 ) × 7 ] = a 10 +5 a 5 –14 ( a 6 +7 ) ( a 6 –9 ) = ( a 6 ) 2 +(7–9 ) ( a 6 ) +[7(–9 ) ] = a 12 –2 a 6 –63 (ab+5 ) (ab–6 ) = (ab ) 2 +(5–6 ) (ab ) +[5(–6 ) ] = a 2 b 2 –ab–30 (x y 2 –9 ) (x y 2 +12 ) = (x y 2 ) 2 +(–9+12 ) (x y 2 ) +[(–9 ) × 12 ] = x 2 y 4 +3x y 2 –108 ( a 2 b 2 –1 ) ( a 2 b 2 +7 ) = ( a 2 b 2 ) 2 +(–1+7 ) ( a 2 b 2 ) +[(–1 ) × 7 ] = a 4 b 4 +6 a 2 b 2 –7 ( x 3 y 3 –6 ) ( x 3 y 3 +8 ) = ( x 3 y 3 ) 2 +(–6+8 ) ( x 3 y 3 ) +[(–6 ) × 8 ] = x 6 y 6 +2 x 3 y 3 –48 ( a x –3 ) ( a x +8 ) = ( a x ) 2 +(–3+8 ) ( a x ) +[(–3 ) × 8 ] = a 2x +5 a x –24 ( a x+1 –6 ) ( a x+1 –5 ) = ( a x+1 ) 2 +(–6–5 ) ( a x+1 ) +[(–6 ) (–5 ) ] = a 2x+2 –11 a x+1 +30 Categories: Capítulo VI