CAPITULO IX
Problemas sobre ecuaciones enteras
- Ejercicio 86
- La edad actual de A es doble que la de B, y hace 10 años la edad de A era el triplo de la de B. hallar las edades actuales.
x edad actual de B 2x edad actual de A Reemplazo el valor de A en la segunda ecuación 2x–10=3( x–10 ) 2x–10=3x–30 2x–3x=–30+10 –x=–20 x=20 edad de B 2x=2( 20 ) =40 edad de A - La edad de A es el triplo de la de B y dentro de 5 años será el doble. Hallar las edades actuales.
3x edad de A x edad de B 3x+5=2( x+5 ) 3x+5=2x+10 3x–2x=10–5 x=5 edad de B 3x=3( 5 ) =15 edad de A - A tiene doble dinero que B. Si A pierde $ 10 y B pierde $ 5, A tendrá $ 20 más que B. ¿Cuánto tiene cada uno 2x dinero de A x dinero de B ( 2x–10 ) –20=x–5 2x–30=x–5 2x–x=30–5 x=25 dinero de B 2x=2( 25 ) =50 dinero de A
- A tiene la mitad de lo que tiene B. Si A gana
66 colonos y B pierde 90, A tendrá el doble de lo que le quede a B.
¿Cuánto tiene cada uno?
x 2 dinero de A x dinero de B x 2 +66=2( x–90 ) x 2 +66=2x–180 x 2 –2x=–66–180 x–4x 2 =–246 –3x=2( –246 ) x= –492 –3 x=164 dinero de B x 2 = 164 2 =82 dinero de A - En una clase el número de señoritas es 1/3
del número de varones. Si ingresaran 20 señoritas y dejaran de asistir
10 varones, habrían 6 señoritas más que varones. ¿Cuántos varones hay y
cuántas señoritas?
x 3 número de señoritas x número de varones ( x 3 +20 ) –6=x–10 x 3 +14=x–10 x 3 –x=–14–10 x–3x 3 =–24 –2x=3( –24 ) x= 3 –2 x=36 número de varones x 3 = 3 =12 número de señoritas - La edad de un padre en el triplo de la edad
de su hijo. La edad que tenía el padre hace 5 años era el duplo de la
edad que tendrá su hijo dentro de 10 años. Hallar las edades actuales.
3x edad del padre x edad del hijo 3x–5=2( x+10 ) 3x–5=2x+20 3x–2x=20+5 x=25 edad del hijo 3x=3( 25 ) =75 edad del padre - La suma de dos números es 85 y el número menor aumentado en 36 equivale al doble del mayor disminuido en 20. Hallar los números.
x número menor 85–x número mayor x+36=2( 85–x ) –20 x+36=170–2x–20 x+36=150–2x x+2x=150–36 3x=114 x= 3 x=38 número menor 85–x=85–38=47 número mayor - Enrique tiene 5 veces lo que tiene su
hermano. Si Enrique le diera a su hermano 50 cts. ambos tendrían lo
mismo. ¿Cuánto tiene cada uno?
5x dinero de Enrique x dinero del hermano 5x–0,5=x+0,5 5x–x=0,5+0,5 4x=1 x= 1 4 =0,25 x=0,25 dinero de hermano 5x=5( 0,25 ) =1,25 dimero de Enrique - Un colono tiene 1400 sucres en dos bolsas. Si
de la bolsa que tiene más dinero saca 200 y los pone en la otra bolsa,
ambas tendrían igual cantidad de dinero. ¿Cuánto tiene cada bolsa?
x bolsa con menos dinero 1400–x bolsa con más dinero ( 1400–x ) –200=x+200 1400–x=x+200+200 1400–2x=400 –2x=400–1400 –2x=–1000 x= –2 x=500 bolsa con menos dinero 1400–x=1400–500=900 bolsa con más dinero - El número de días que ha trabajado Pedro es 4
veces el número de días que ha trabajado Enrique. Si Pedro hubiera
trabajado 15 días menos y Enrique 21 días más, ambos habrían trabajado
igual número de días. ¿Cuántos días trabajó cada uno?
4x días trabajados de Pedro x dias trabajados de Enrique 4x–15=x+21 4x–x=21+15 3x=36 x= 3 x=12 días trabajados de Enrique 4x=4( 12 ) =48 días trabajados de Pedro - Hace 14 años la edad de un padre era el
triplo de la edad de su hijo y ahora es el doble. Hallar las edades
respectivas hace 14 años.
x edad del hijo 2x edad del padre 2x–14=3( x–14 ) 2x–14=3x–42 2x–3x=–42+14 –x=–28 x=28 edad actual del hijo hace 14 años 28–14=14 edad del hijo 3x=3( 14 ) =42 edad del padre - Dentro de 22 años la edad de Juan será el doble de la de su hijo y actualmente es el triplo. Hallar las edades actuales.
3x edad actual de Juan x edad actual hijo 3x+22=2( x+22 ) 3x+22=2x+44 3x–2x=44–22 x=22 edad del hijo 3x=3( 22 ) =66 edad de Juan - Entre A y B tienen $ 84. Si A gana $ 80 y B gana $ 4, A tendrá el triplo de lo que tenga B. ¿Cuánto tiene cada uno?
A+B=84 ↔ A=84–B A+80 =3( B+4 ) Reemplazo el valor de A en la ecuación 84–B+80 =3B+12 –B–3B+164 =12 –4B =–164+12 –4B =–152 B = –4 B =38 $ A= 84–B=84–( 38 ) =46 A =46 $