Comparte esto 👍👍DESCARGACAPITULO XVI Ecuaciones literales de primer grado con una icognitaEjercicio 144Resolver las siguientes ecuaciones: m x – 1 m = 2 m m 2 –x m x = 2 m m 2 –x =2x m 2 =2x+x m 2 =3x x = m 2 3 a x + b 2 = 4a x 2a+bx 2 x = 4a x 2a+bx =8a bx =8a–2a bx =6a x = 6a b x 2a – 1–x a 2 = 1 2a ax–1+x 2 a 2 = 1 2a ax–1+x =a x (a+1 ) = a+1 x =1 m x + n m = n x +1 m 2 +nx m x = n+x x m 2 +nx =m(n+x ) m 2 +nx =mn+mx m 2 –mn =mx–nx m (m–n ) =x (m–n ) x =m a–1 a + 1 2 = 3a–2 x 2(a–1 ) +a 2a = 3a–2 x 2a–2+a 2a = 3a–2 x 3a–2 2a = 3a–2 x x (3a–2 ) =2a (3a–2 ) x =2a a–x a – b–x b = 2(a–b ) ab b(a–x ) –a(b–x ) ab = 2(a–b ) ab ab –bx– ab +ax =2(a–b ) x (a–b ) =2 (a–b ) x =2 x–3a a 2 – 2a–x ab =– 1 a b(x–3a ) –a(2a–x ) a 2 b =– 1 a bx–3ab–2 a 2 +ax =–ab ax+bx =2 a 2 +3ab–ab ax+bx =2 a 2 +2ab x (a+b ) =2a (a+b ) x+m m – x+n n = m 2 + n 2 mn –2 n(x+m ) –m(x+n ) mn = m 2 + n 2 –2mn mn nx+ mn –mx– mn = n 2 –2mn+ m 2 x (n–m ) = (n–m ) 2 x =n–m x–b a =2– x–a b x–b a + x–a b =2 b(x–b ) +a(x–a ) ab =2 bx– b 2 +ax– a 2 =2ab ax+bx = a 2 +2ab+ b 2 x (a+b ) = (a+b ) 2 x =a+b 4x 2a+b –3 =– 3 2 4x 2a+b =3– 3 2 4x 2a+b = 6–3 2 4x 2a+b = 3 2 2(4x ) =3(2a+b ) 8x =3(2a+b ) x = 3(2a+b ) 8 2a+3x x+a = 2(6x–a ) 4x+a 2a+3x x+a = 12x–2a 4x+a (2a+3x ) (4x+a ) =(12x–2a ) (x+a ) 8ax+2 a 2 + 12 x 2 +3ax = 12 x 2 +12ax–2ax–2 a 2 2 a 2 +2 a 2 =10ax–11ax 4 a 2 =– a x x =–4a 2(x–c ) 4x–b = 2x+c 4(x–b ) 2x–2c 4x–b = 2x+c 4x–4b (2x–2c ) (4x–4b ) =(2x+c ) (4x–b ) 8 x 2 –8bx–8cx+8bc = 8 x 2 –2bx+4cx–bc –8bx–8cx–4cx+2bx =–8bc–bc –6bx–12cx =–9bc –x(b+c ) =–bc x = 3bc 2(b+c ) 1 n – m x = 1 mn – 1 x x–mn nx = x–mn m nx m(x–mn ) =x–mn mx– m 2 n =x–mn mx–x = m 2 n–mn x (m–1 ) =mn (m–1 ) x =mn (x–2b ) (2x+a ) (x–a ) (a–2b+x ) =2 (x–2b ) (2x+a ) =2(x–a ) (a–2b+x ) 2 x 2 +ax–4bx–2ab =2( ax –2bx+ x 2 – a 2 +2ab– ax ) 2 x 2 +ax– 4bx –2ab =– 4bx + 2 x 2 –2 a 2 +4ab ax =2ab–2 a 2 +4ab ax =6ab–2 a 2 a x =2 a (3b–a ) x =2(3b–a ) x+m x–n = n+x m+x (x+m ) (m+x ) =(n+x ) (x–n ) (x+m ) 2 = x 2 – n 2 x 2 +2mx+ m 2 = x 2 – n 2 2mx =– m 2 – n 2 x =– m 2 + n 2 2m x(2x+3b ) (x+b ) x+3b =2 x 2 –bx+ b 2 x(2 x 2 +3bx+2bx+3 b 2 ) =(x+3b ) (2 x 2 –bx+ b 2 ) 2 x 3 + 5b x 2 +3 b 2 x = 2 x 3 – b x 2 + b 2 x+ 6b x 2 –3 b 2 x+3 b 3 3 b 2 x+2 b 2 x =3 b 3 5 b 2 x =3 b 3 x = 3b 5 3 4 ( x b + x a ) = 1 3 ( x b – x a ) + 5a+13b 12a 3 4 ( ax+bx ab ) = 1 3 [ x b – x a + 5a+13b 4a ] 3 4 ( ax+bx ab ) = 1 3 [ 4ax–4bx+5ab+13 b 2 4 ab ] 9(ax+bx ) =4ax–4bx+5ab+13 b 2 9ax+9bx–4ax+4bx =5ab+13 b 2 5ax+13bx =b(5a+13b ) x (5a+13b ) =b (5a+13b ) x =b x+a 3 = (x–b ) 2 3x–a + 3ab–3 b 2 9x–3a x+a 3 = (x–b ) 2 3x–a + 3 (ab– b 2 ) 3 (3x–a ) x+a 3 = 1 3x–a [ (x–b ) 2 +ab– b 2 ] x+a 3 = 1 3x–a [ x 2 –2bx+ b 2 +ab– b 2 ] (x+a ) (3x–a ) =3( x 2 –2bx+ab ) 3 x 2 –ax+3ax– a 2 = 3 x 2 –6bx+3ab 2ax+6bx = a 2 +3ab 2x (a+3b ) =a (a+3b ) x = a 2 5x+a 3x+b = 5x–b 3x–a (5x+a ) (3x–a ) =(5x–b ) (3x+b ) 15 x 2 –5ax+3ax– a 2 = 15 x 2 +5bx–3bx– b 2 –5ax+3ax–5bx+3bx = a 2 – b 2 –2ax–2bx =(a–b ) (a+b ) –2x (a+b ) =(a–b )(a+b ) x = b–a 2 x+a x–a – x–a x+a = a(2x+ab ) x 2 – a 2 (x+a ) 2 – (x–a ) 2 (x–a ) (x+a ) = a(2x+ab ) x 2 – a 2 [(x+a ) +(x–a ) ] [(x+a ) –(x–a ) ] =2ax+ a 2 b (x+ a +x– a ) ( x +a– x +a ) =2ax+ a 2 b 2x(2a ) =2ax+ a 2 b 4ax–2ax = a 2 b 2 a x = a 2 b x = ab 2 2x–3a x+4a –2 = 11a x 2 –16 a 2 2x–3a–2(x+4a ) x+4a = 11a (x+4a )(x–4a ) 2x –3a– 2x –8a = 11a x–4a – 11a (x–4a ) = 11a –x+4a =1 x =4a–1 1 x+a + x 2 a 2 +ax = x+a a 1 x+a + x 2 a(x+a ) = x+a a 1 x+a (1+ x 2 a ) = x+a a 1 x+a ( a+ x 2 a ) = x+a a a+ x 2 = (x+a ) 2 a+ x 2 = x 2 +2ax+ a 2 a– a 2 =2ax a (1–a ) =2 a x x = 1–a 2 2(a+x ) b – 3(b+x ) a = 6( a 2 –2 b 2 ) ab 2a(a+x ) –3b(b+x ) ab = 6( a 2 –2 b 2 ) ab 2 a 2 +2ax–3 b 2 –3bx =6 a 2 –12 b 2 2ax–3bx =6 a 2 –2 a 2 –12 b 2 +3 b 2 x(2a–3b ) =4 a 2 –9 b 2 x (2a–3b ) =(2a+3b )(2a–3b ) x =2a+3b m(n–x ) –(m–n ) (m+x ) = n 2 – 1 n (2m n 2 –3 m 2 n ) mn–mx–( m 2 +mx–mn–nx ) = n 2 – 1 n n (2mn–3 m 2 ) mn –mx– m 2 –mx+ mn +nx = n 2 –2mn+3 m 2 nx–2mx = n 2 –2mn+3 m 2 + m 2 x(n–2m ) = n 2 –2mn+4 m 2 x (n–2m ) = (n–2m ) 2 x =n–2m Categories: Capítulo XVI