Comparte esto 👍👍DESCARGACAPITULO XXXIII Ecuaciones con radicales que se reducen a segundo grado (soluciones extrañas)Ejercicio 273Resolver las ecuaciones siguientes haciendo la verificación con ambas raíces: x+ 4x+1 =5 ( 4x+1 ) 2 = (5–x ) 2 4x+1 =25–10x+ x 2 0 =–4x–1+25–10x+ x 2 x 2 –14x+24 =0 (x–12 ) (x–2 ) =0 x–2 =0 x 1 =2 x–12 =0 x 2 =12 Verificación : Sea x=2 2+ 4( 2 ) +1 =5 2+ 9 =5 2+3 =5 5 =5 ⇒ x=2 si satisface la ecuación dada Sea x=12 12+ 4( 12 ) +1 =5 12+ 25 =5 12+5 =5 17 ≠ 5 ⇒ x=12 no satisface la ecuación, por tanto es una solución extraña 2x– x–1 =3x–7 – x–1 =3x–2x–7 (– x–1 ) 2 = (x–7 ) 2 x–1 = x 2 –14x+49 0 = x 2 –14x–x+1+49 x 2 –15x+50 =0 (x–10 ) (x–5 ) =0 x–5 =0 x 1 =5 x–10 =0 x 2 =10 Verificación : Sea x=5 2( 5 ) – 5–1 =3( 5 ) –7 10– 4 =15–7 10–2 =8 8 =8 ⇒ x=5 si satisface la ecuación dada Sea x=10 2( 10 ) – 10–1 =3( 10 ) –7 20– 9 =30–7 20–3 =23 17 ≠ 23 ⇒ x=10 no satisface la ecuación, por tanto es una solución extraña 5x–1 + x+3 =4 ( 5x–1 ) 2 = (4– x+3 ) 2 5x–1 =16–8 x+3 +x+3 5x–1–x–3–16 =–8 x+3 4x–20 =–8 x+3 Dividiendo la ecuación para 4 (x–5 ) 2 = (–2 x+3 ) 2 x 2 –10x+25 =4(x+3 ) x 2 –10x+25 =4x+12 x 2 –10x+25–4x–12 =0 x 2 –14x+13 =0 (x–13 ) (x–1 ) =0 x–1 =0 x 1 =1 x–13 =0 x 2 =13 Verificación : Sea x=1 5( 1 ) –1 + 1+3 =4 4 + 4 =4 2+2 =4 4 =4 ⇒ x=1 si satisface la ecuación dada Sea x=13 5( 13 ) –1 + 13+3 =4 64 + 16 =4 8+4 =4 12 ≠ 4 ⇒ x=12 no satisface la ecuación, por tanto es una solución extraña 2 x – x+5 =1 (2 x –1 ) 2 = ( x+5 ) 2 4x–4 x +1 =x+5 4x–x–5+1 =4 x (3x–4 ) 2 = (4 x ) 2 9 x 2 –24x+16 =16x 9 x 2 –24x+16–16x =0 9 x 2 –40x+16 =0 9 x 2 –36x–4x+16 =0 9x(x–4 ) –4(x–4 ) =0 (x–4 ) (9x–4 ) =0 x–4 =0 x 1 =4 9x–4 =0 9x =4 x 2 = 4 9 Verificación : Sea x=4 2 4 – 4+5 =1 2( 2 ) – 9 =1 4–3 =1 1 =1 ⇒ x=4 si satisface la ecuación dada Sea x= 4 9 2 4 9 – 4 9 +5 =1 2( 2 3 ) – 4+45 9 =1 4 3 – 49 9 =1 4 3 – 7 3 =1 4–7 3 =1 –1 ≠ 1 ⇒ x= 4 9 no satisface la ecuación, por tanto es una solución extraña 2x–1 + x+3 =3 ( 2x–1 ) 2 = (3– x+3 ) 2 2x–1 =9–6 x+3 +x+3 2x–1–12–x =–6 x+3 (x–13 ) 2 = (–6 x+3 ) 2 x 2 –26x+169 =36(x+3 ) x 2 –26x+169 =36x+108 x 2 –26x+169–36x–108 =0 x 2 –62x+61 =0 (x–61 ) (x–1 ) =0 x–1 =0 x 1 =1 x–61 =0 x 2 =61 Verificación : Sea x=1 2( 1 ) –1 + 1+3 =3 2–1 + 4 =3 1+2 =3 3 =3 ⇒ x=1 si satisface la ecuación dada Sea x=61 2( 61 ) –1 + 61+3 =3 122–1 + 64 =3 121 +8 =3 11+8 =3 18 ≠ 3 ⇒ x=61 no satisface la ecuación, por tanto es una solución extraña x–3 + 2x+1 –2 x =0 ( x–3 + 2x+1 ) 2 = (2 x ) 2 x–3+2 (x–3 ) (2x+1 ) +2x+1 =4x 2 2 x 2 +x–6x–3 =4x–3x+2 (2 2 x 2 –5x–3 ) 2 = (x+2 ) 2 4(2 x 2 –5x–3 ) = x 2 +4x+4 8 x 2 –20x–12– x 2 –4x–4 =0 7 x 2 –24x–16 =0 7 x 2 –28x+4x–16 =0 7x(x–4 ) +4(x–4 ) =0 (7x+4 ) (x–4 ) =0 x–4 =0 x 1 =4 7x+4 =0 7x =–4 x 2 =– 4 7 Verificación : Sea x=4 4–3 + 2( 4 ) +1 –2 4 =0 1 + 8+1 –2( 2 ) =0 1+3–4 =0 0 =0 ⇒ x=4 si satisface la ecuación dada Sea x= – 4 7 – 4 7 –3 + 2(– 4 7 ) +1 –2 – 4 7 =0 –4–21 7 + – 8 7 +1 –2 – 4 7 =0 –25 7 + –8+7 7 –2 2 7 i =0 5 7 i + 1 7 i –2 2 7 i =0 5 7 i + 1 7 i – 4 7 i ≠ 0 ⇒ x=– 4 7 no satisface la ecuación, por tanto es una solución extraña 5x–1 – 3–x = 2x ( 5x–1 – 3–x ) 2 = ( 2x ) 2 5x–1–2 (5x–1 ) (3–x ) +3–x =2x –2 (5x–1 ) (3–x ) =2x–4x–2 –2 15x–5 x 2 –3+x =–2x–2 Dividiendo la ecuación para –2 ( 16x–5 x 2 –3 ) 2 = (x+1 ) 2 16x–5 x 2 –3 = x 2 +2x+1 16x–5 x 2 –3– x 2 –2x–1 =0 –6 x 2 +14x–4 =0 Dividiendo la ecuación para –2 3 x 2 –7x+2 =0 3 x 2 –6x–x+2 =0 3x(x–2 ) –(x–2 ) =0 (3x–1 ) (x–2 ) =0 x–2 =0 x 1 =2 3x–1 =0 3x =1 x 2 = 1 3 Verificación : Sea x=2 5( 2 ) –1 – 3–2 = 2( 2 ) 10–1 – 1 = 2 2 9 –1 =2 3–1 =2 2 =2 ⇒ x=2 si satisface la ecuación dada Sea x= 1 3 5( 1 3 ) –1 – 3– 1 3 = 2( 1 3 ) 5 3 –1 – 9–1 3 = 2 3 5–3 3 – 8 3 = 2 3 2 3 – 8 3 = 2 3 – 8 3 ≠ 0 ⇒ x= 1 3 no satisface la ecuación, por tanto es una solución extraña 3x+1 + 5x = 16x+1 ( 3x+1 + 5x ) 2 = ( 16x+1 ) 2 3x+ 1 +2 5x(3x+1 ) +5x =16x+ 1 2 15 x 2 +5x =16x–8x 2 15 x 2 +5x =8x Dividiendo la ecuación para 2 ( 15 x 2 +5x ) 2 = (4x ) 2 15 x 2 +5x =16 x 2 0 =16 x 2 –15 x 2 –5x x 2 –5x =0 x(x–5 ) =0 x 1 =0 x–5 =0 x 2 =5 Verificación : Sea x=0 3( 0 ) +1 + 5( 0 ) = 16( 0 ) +1 1 +0 = 0+1 1 =1 ⇒ x=0 si satisface la ecuación dada Sea x=5 3( 5 ) +1 + 5( 5 ) = 16( 5 ) +1 15+1 + 5 2 = 80+1 16 +5 = 81 4+5 =9 9 =9 ⇒ x=5 si satisface la ecuación 2x+ 4x–3 =3 ( 2x+ 4x–3 ) 2 = 3 2 2x+ 4x–3 =9 ( 4x–3 ) 2 = (9–2x ) 2 4x–3 =81–36x+4 x 2 0 =81–36x–4x+3+4 x 2 4 x 2 –40x+84 =0 Dividiendo la ecuación para 4 x 2 –10x+21 =0 (x–7 ) (x–3 ) =0 x–7 =0 x 1 =7 x–3 =0 x 2 =3 Verificación : Sea x=3 2( 3 ) + 4( 3 ) –3 =3 6+ 12–3 =3 6+ 9 =3 6+3 =3 9 =3 3 =3 ⇒ x=3 si satisface la ecuación dada Sea x=7 2( 7 ) + 4( 7 ) –3 =3 14+ 28–3 =3 14+ 25 =3 14+5 =3 19 ≠ 3 ⇒ x=7 no satisface la ecuación, por tanto es una solución extraña x+3 + 6 x+3 =5 ( x+3 ) 2 +6 x+3 =5 x+3+6 x+3 =5 (x+9 ) 2 = (5 x+3 ) 2 x 2 +18x+81 =25(x+3 ) x 2 +18x+81 =25x+75 x 2 +18x+81–25x–75 =0 x 2 –7x+6 =0 (x–6 ) (x–1 ) =0 x–6 =0 x 1 =6 x–1 =0 x 2 =1 Verificación : Sea x=6 6+3 + 6 6+3 =5 9 + 6 9 =5 3+ 3 =5 3+2 =5 5 =5 ⇒ x=6 si satisface la ecuación dada Sea x=1 1+3 + 6 1+3 =5 4 + 6 4 =5 2+ 2 =5 2+3 =5 5 =5 ⇒ x=1 si satisface la ecuación dada x + 4 x =5 x+4 x =5 (x+4 ) 2 = (5 x ) 2 x 2 +8x+16 =25x x 2 +8x+16–25x =0 x 2 –17x+16 =0 (x–16 ) (x–1 ) =0 x–1 =0 x 1 =1 x–16 =0 x 2 =16 Verificación : Sea x=1 1 + 4 1 =5 1+4 =5 5 =5 ⇒ x=1 si satisface la ecuación dada Sea x=16 16 + 4 16 =5 4+ 4 4 =5 4+1 =5 5 =5 ⇒ x=1 si satisface la ecuación dada 2 x = x+7 + 8 x+7 2 x = ( x+7 ) 2 +8 x+7 2 x = x+7+8 x+7 (2 x(x+7 ) ) 2 = (x+15 ) 2 4( x 2 +7x ) = x 2 +30x+225 4 x 2 +28x = x 2 +30x+225 4 x 2 +28x– x 2 –30x–225 =0 3 x 2 –2x–225 =0 3 x 2 –27x+25x–225 =0 3x(x–9 ) +25(x–9 ) =0 (3x+25 ) (x–9 ) =0 x–9 =0 x 1 =9 3x+25 =0 3x =–25 x 2 =– 25 3 Verificación : Sea x=9 2 9 = 9+7 + 8 9+7 2( 3 ) = 16 + 8 16 6 =4+ 4 6 =4+2 6 =6 ⇒ x=9 si satisface la ecuación dada Sea x= – 25 3 2 – 25 3 = – 25 3 +7 + 8 – 25 3 +7 2 5 3 i = –25+21 3 + 8 –25+21 3 2 5 3 i = –4 3 + 8 –4 3 2 5 3 i = 2 3 i + 8 2 3 i 2 5 3 i ≠ 2 3 i + 8 3 i 2 ⇒ x=– 25 3 no satisface la ecuación, por tanto es una solución extraña x+ x+8 =2 x ( x+ x+8 ) 2 = (2 x ) 2 x+ x+8 =4x x+8 =4x–x ( x+8 ) 2 = (3x ) 2 x+8 =9 x 2 9 x 2 –x–8 =0 9 x 2 –9x+8x–8 =0 9x(x–1 ) +8(x–1 ) =0 (9x+8 ) (x–1 ) =0 x–1 =0 x 1 =1 9x+8 =0 9x =–8 x 2 =– 8 9 Verificación : Sea x=1 1+ 1+8 =2 1 1+ 9 =2 1+3 =2 4 =2 2 =2 ⇒ x=1 si satisface la ecuación dada Sea x= – 8 9 – 8 9 + – 8 9 +8 =2 – 8 9 – 8 9 + –8+72 9 =2 8 3 i – 8 9 + 64 9 =2 8 3 i – 8 9 + 8 3 =2 8 3 i –8+24 9 =2 8 3 i 16 9 =2 8 3 i 4 5 ≠ 2 8 3 i ⇒ x=– 8 9 no satisface la ecuación, por tanto es una solución extraña 6–x + x+7 – 12x+1 =0 ( 6–x + x+7 ) 2 = ( 12x+1 ) 2 6– x +2 (6–x ) (x+7 ) + x +7 =12x+1 2 6x+42– x 2 –7x =12x+1–13 2 42– x 2 –x =12x–12 Dividiendo la ecuación para 2 ( 42– x 2 –x ) 2 = (6x–6 ) 2 42– x 2 –x =36 x 2 –72x+36 42– x 2 –x–36 x 2 +72x–36 =0 –37 x 2 +71x+6 =0 37 x 2 –71x–6 =0 37 x 2 –74x+3x–6 =0 37x(x–2 ) +3(x–2 ) =0 (37x+3 ) (x–2 ) =0 x–2 =0 x 1 =2 37x+3 =0 37x =–3 x 2 =– 3 37 Verificación : Sea x=2 6–2 + 2+7 – 12( 2 ) +1 =0 4 + 9 – 24+1 =0 2+3– 25 =0 5–5 =0 0 =0 ⇒ x=2 si satisface la ecuación dada Sea x= – 3 37 6–(– 3 37 ) + – 3 37 +7 – 12(– 3 37 ) +1 =0 6+ 3 37 + –3+259 37 – – 36 37 +1 =0 222+3 37 + 256 37 – –36+37 37 =0 225 37 + 16 37 37 – 1 37 =0 15 37 37 + 16 37 37 – 37 37 =0 37 37 (15+16–1 ) =0 30 37 37 ≠ 0 ⇒ x=– 3 37 no satisface la ecuación, por tanto es una solución extraña Categories: Capítulo XXXIII